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Abstract-Mode I crack propagation in an elastic layer is discussed, Previous investigations have
dealt with cases in which the crack edge travels with sub-Rayleigh velocity with respect to the
surrounding medium, and with either sub-Rayleigh or supersonic velocity with respect to the layer.
In the present paper, the third fundamental case is studied; crack edge travel at sub-Rayleigh velocity
with respect to the layer and supersonic velocity with respect to the outer medium. Comparison is
made between the three cases, and the theoretical basis for expecting the plane stress Rayleigh wave
velocity of the outer medium as an upper limit of the crack velocity in the recent experiments by
Washabaugh and Knauss (1994, Int, J. Fract. 65, 97-114) is discussed,

1. INTRODUCTION

Crack propagation in a layer is of interest in connection with earthquakes, structural joints
and laminate materials. Since crack edges sometimes reach velocities which may be higher
than half the Rayleigh wave velocity, different situations can occur, depending on the
relation between crack edge velocity and the sound velocities in the layer and in the
surrounding medium. Even though the crack edge velocity usually is sub-Rayleigh with
respect to both media, it might be super-Rayleigh and even intersonic or supersonic with
respect to one of the media, if these are very dissimilar. However, under mode I loading,
the velocity must be sub-Rayleigh with respect to at least one of the media, except in cases
when energy can be fed directly to the crack edge, as at crack face loading.

In previous papers, the cases of supersonic (Broberg, 1974, 1977) and sub-Rayleigh
(Broberg, 1975) mode I crack propagation with respect to the layer were investigated,
assuming sub-Rayleigh velocity with respect to the surrounding medium. In the present
paper the crack edge velocity is assumed to be sub-Rayleigh with respect to the layer, and
supersonic with respect to the surrounding medium. For simplicity, as in the two previous
papers, steady state conditions, obtained by moving crack face loads, are assumed,
However, it will be shown that the validity of the solution obtained can be extended to
cases of remote loading. This is also possible, at least approximately, for the other two
cases, as briefly discussed by Broberg (1977).

2, STATEMENT OF THE PROBLEM

A layer of thickness 2d of a linearly elastic material is situated in an infinite solid. The
propagation velocities for the solid are C for P-waves and kc for S-waves. For the layer, the
propagation velocities are KC for P-waves and klKC for S-waves. It is assumed that k,K > 1,
i.e. the propagation velocity for S-waves in the layer is higher than the propagation velocity
of S-waves in the solid. The modulus of rigidity is J.l for the solid and J.ll for the layer. By
using J.l, J.l" k and k, as elastic constants, the treatment is valid both for plane strain and
plane stress.

Due to the symmetry, only half the body needs to be regarded. Thus, introducing a
Cartesian coordinate system x,y, the solid y ~ 0 and the layer 0 ~ y ~ d are regarded. The
lower crack surface is situated on y = d, x < Vt, where t is time and Vis a constant velocity.

A normal stress (1) = h (x - Vt) is acting on the surface v = d, x < Vt. h (x) is assumed
to be insignificant for x < - L, i.e. the "extension" of the l;ad can be described by L. It is
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assumed that I < Vic < klK, i.e. the crack velocity is supersonic with respect to the semi­
infinite solid and subsonic with respect to the layer. On the surface y = d, x> Vt, the
normal displacement v = O. The shear stress <xy = 0 on the whole surface y = d.

The problem consists essentially of finding the normal stress (Jy = f(x- Vt) on the
surface y = d, x > Vt, and the normal displacement v (x - Vt) on the surface y = d, x < Vt.

3. TREATMENT OF THE PROBLEM

The problem is treated in essentially the same way as the one in Broberg (1974). Thus,
a solution is first sought to the simple boundary value problem of a concentrated force P,
acting on y = d and moving with constant velocity V in the positive x direction. In addition
to the boundary conditions for y = d, there are continuity conditions for normal and shear
stresses as well as for the displacements along the interface y = O. It is convenient to
introduce a moving coordinate system with dimensionless coordinates,

~ = (x- Vt)ld

1] = Yld

and the functions

hoW=h(x-Vt), for~<O, 1]=1.

Then the equations of motion are

for the solid and

for the layer. Here <1>, '1', <1>, and '1'1 are potential functions such that

where u, is the displacement in the ( direction. Furthermore

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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V 2

b~ = 1- -k2 2 2' b2 > O.
]K C
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The solution to the simple boundary value problem involves a very time-consuming
determination of constants, whereupon one obtains the displacement gradient ovdo~ on
rJ = 1 for the concentrated force,

where

III A
D(rx) = sech(b l rx)sech(b2rx)+-' ---

11 b l (l-bD

x {[(l + b2)2 R + 4b l b2S] • [sech (b l rx) sech (b 2rx) - 1]

+ [4b l b2R + (l +bD2S] tanh (b l rx) tanh (b 2rx)}

ial (l +aD
A=-------'-~-"-'-----

4aja2 +(l-a~)2

R = Cb l{4~(l +alaz) -4(I-a~ +2ala2)+ ~[4ala2+ (l-am}
11 III

C=-----­
al (l +aD(l-bD

(11)

Now, by superposition, an expression in the form of an integral is obtained for the
displacement gradient OVI/OX on rJ = I resulting from an arbitrarily distributed load
(Iy = fl(~) moving with velocity Von rJ = 1

where

(12)
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(13)

The stressII G) and the displacement gradient function 91 (~) are now written as

11m = lo(~)+ho(~), lo(~) = 0 for ~ < 0, ho(~) = 0 for ~ > 0 (14)

91 (~) = go(~), 9o(~) = 0 for ~ > O. (15)

It is now obvious that eqn (12) contains as unknown quantities the displacement
gradient function 9o(~) for ~ < 0 and the normal stress.fo(~) for ~ > O. It is a Wiener-Hopf
equation of the first kind. In order to solve the equation, the following Laplace transforms
are introduced:

(16)

(17)

(18)

Since the integral in eqn (12) is a convolution integral, and

where J(IX) is Dirac's delta function, one obtains

G(p) = -n(F(p)+H(p)]K(p), ~p = 0

where

N( -ip)
K(p) = D (-ip)'

The first step in the Wiener-Hopf technique is to factorize K (P), i.e. to write

(19)

(20)

(21)

(22)

where K+(p) is regular in ~p ~ 0 and K_(P) is regular in ~p ~ O. In order to perform the
factorization, some properties ofN (IX) and D (IX) need to be known. Both possess imaginary
zeroes only (see the Discussion), and

When IX -.. 0,

N(oo) = _ N(-oo) = iIN(oo)!
D (00 ) D ( - 00 ) D(00 )

[
N(IX)] [N(±oo)].n

In D(IX) -..ln D(±oo) ±12 aslX -" ±oo.

(23)

(24)
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Now, by standard methods, one obtains

1 f+C» [N(q)J' . 1 N(-oo)
lnK+(p)=2ni -C» lnD(q) In(q+lP)dq +"2 ln D(_OO)' 9fp;::O

where' sign denotes differentiation with respect to q. As p -+ 0,

1 f+'C» [ N(q)J'
= - -2. In= In Iql dq = In K+(P)

m -00 D (q)

where a bar denotes complex conjugation. Thus,

where Co is a real constant. Similarly one obtains

As p -+ 00,

In K+ (p) -+ 2~i f~: [In ~~:;J (lnp+i~)dq+~ln~~=:;
lnp N(oo)D(-oo) I N(oo)N(-oo)

= -. In + -In ----,---
2m D (oo)N ( - (0) 4 D (oo)D ( - (0)

and, since

N(oo)D (- (0)
-'--'---'-----'- = em
D (oo)N( - 00) ,

one obtains

I 1

1 '2

K (P) = N(oo) I 1/2 = C 1/2
+ D (00) p C»p.

Similarly, as p -+ - 00,

887

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

For sub-Rayleigh crack velocity with respect to the layer, the constant CC» is found to be
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(35)

The second step in the Wiener-Hopftechnique is to make necessary partitions so that each
term is regular in either the left or the right half-plane. Insertion of eqn (22) into eqn (20)
gives

(36)

The second term does not possess the required character and must be partitioned. To this
end one observes that

H(p) -> -ho(O)asp-> ±ioo.

Thus

and, hence, the partition

is obtained by choosing

_ ~ f+.icXc H (q)K+ (q)
L+ (p) - 2 () dq, ~p ~ 0

-'00 q q-p

i f+iOC H(q)K+(q)
L (p) = -:2. (_) dq, ~p ~ O.

-'cXc q q p

Thus,

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Here the left member is regular for fJip ~ 0 and the right member is regular for fJip ~ O.
Both members behave algebraically as p tends towards infinity in the respective regions of
regularity. Then, by Liouville's theorem, they must equal a polynomial of finite degree.
With Ko, K" ... , Kn as constants, the third step in the Wiener-Hopf technique gives

nF ) __ L+(p) ~ KIP... Knpn
(p - p K+(p) + K+(p) + K+(p) + K+(p) , fJip ~ 0 (45)

(46)
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The final step in the Wiener-Hopf technique consists of determining the constants Kjo
One observes that

(47)

(48)

The condition that/om must be integrable gives for p --+ 00 from eqn (47)

and for p --+ 0 from eqn (48)

Hence

Ko = 0

(49)

(50)

(51)

(52)

(53)

This is the solution of the Wiener-Hopf equation (20). Inversion of F(p) and G (P) can be
madefor p --+ 00 andp --+ - 00, respectively, giving.fo(~) and go(~) for I~I « 1. Since L+(P) --+

oas p --+ 00 and L_ (P) --+ 0 as p --+ - 00, one obtains

Hence

L+(0)pl/2
F(p) --+ C asp --+ + co

11: 00

(54)

(55)

(56)

(57)

For later use, the function L+(p) will be written in a more manageable form, by the
substitution q --+ iq in the integral in eqn (42) :

L+ (P) = ~ f+ 00 H(iq)K+ (iq) d
2 -OC; q (q+ip) q

(58)
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4. THICK LAYER APPROXIMATION, d/L» 1

For p ---> 0, one obtains from eqn (58)

(59)

where C on the integral sign denotes the Cauchy principal value.
For a thick layer d/L» 1, K+(iq) can be approximated by Coo (iq)I/2, so that insertion

into eqn (59) gives

Thus,

where () < 1, since

Use of eqns (56) and (57) gives, after returning to original coordinates,

(62)

1
00

h(s) [ fico{} AJ Vt-xx - ds- I - - as-- ---> 0.
o vh Coo d d

(64)

Not surprisingly, as d/L ---> 00, one obtains the result by Craggs (1960) for a semi­
infinite crack in an infinite body of the layer material. Since the energy release rate is
proportional to J x- Vt(uy)y ~ dJVt-X(ov/ox)y ~ d (Broberg, 1964), itis obtained, approxi.
mately, from the homogeneous case by mUltiplication with the factor

(65)

From eqn (64), it is obvious that (ov/ox)v = dchanges sign when V passes the Rayleigh
wave velocity for the layer. This velocity is thus an upper limit for V.
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5. THIN LAYER APPROXIMATION, djL« 1

891

(66)

one can substitute K+ (iq) in eqn (58) by the right member of equality (66). K_ (iq) is regular
for fq ~ 0, and therefore the integral over q can be calculated by residue calculus. D (q)
possesses imaginary zeroes; q = ifJ., n = 1,2,3, ... , fJ" < fJn+ l' In the neighbourhood of a
zero,

D (q) ~ D'(ifJ")(q-ifJ").

Hence,

Hence, use of eqns (56) and (57) gives, after returning to original coordinates,

(67)

(68)

(69)

(70)

One notices that D'(ifJ") is imaginary. From eqn (69) it is obvious that (O')Y=d goes to zero
when the Rayleigh wave velocity for the layer is approached. The Rayleigh wave velocity
is thus an upper limit of V.

The integral in eqns (69) and (70) is convergent for any finite h (x), and one can thus
allow Lid to reach infinity. In particular, one can have h (x) = constant = - (J'; and then,
by superposition of the stress (Jy = (J'; everywhere, one obtains the case of traction free
crack faces and remote loading:

(71)
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(72)

This result is perhaps somewhat unexpected, since one is used to thinking that a semi­
infinite crack cannot be subjected to a finite constant remote load normal to its plane.
However, regarding the case with crack face loading, it is obvious that energy from the
load is transferred to the crack edge region only through the layer, and it is thus filtered
away more and more the further back from the crack edge it originates. Mathematically
this is expressed by the fact that the integrals in eqns (69) and (70) contain exponential
functions, so that the contribution from "large" values of the integration variable becomes
insignificant, i.e., the "tail" of a "long" moving load does not influence the results appre­
ciably. Consequently the results can be carried over to other cases than semi-infinite cracks;
they should also hold approximately for an edge crack or a central crack in a plate as soon
as approximately constant velocity is obtained.

The energy release rate d WjdS is found in the usual way for dynamic cases as
lWy JX- VtovjoxJVt-xas Ixl ...... Vt (Broberg, 1964):

which for remote loading reduces to

(74)

For finite values of Ljd one obtains, from eqn (41),

and hence, from eqn (53),

G(p) ioc

-- ...... - n homd~ as p ...... 0
p 0

and thus, according to a Tauber theorem,

i.e.

(75)

(76)

(77)

(78)

For the case Ljd = 00, or constant remote loading, one can easily obtain the asymptotic
behaviour of vex) as x ...... - 00 by assuming d = O. The solution is then obtained from the
solution cD = cDo(x-a1y), 'P = 'Po(x-azY) to the equations of motion (5) and (6) after use
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of the boundary conditions ony = 0, that ay = 0 for x> 0, ay = -a';' for x < 0 and Lxy = 0
for all x. The result for x < 0 is

vex) = a';' . a] (1 +aD x
J1 4a] a2 + (1- a~)2

which therefore is the asymptotic expression for vex) as x -. - 00 when d is finite.

(79)

6. DISCUSSION

For crack propagation to take place at a higher velocity than the velocity of P-waves
in the outer medium, the stress intensity factor must overshoot a certain minimum value.
The crack will then propagate with a speed, which is determined by this stress intensity
factor, and possibly also other factors, cf Broberg (1979), Ravi-Chandar (1982), Ravi­
Chandar and Knauss (1984a-d) and Johnson (1992,1993).

As is evident from eqn (69) or (71), the thinner the layer is, the higher must the load
be to produce the minimum stress intensity factor required. Ifthe layer is thin enough then,
at remote loading, the normal stress at the layer boundaries will reach the interface strength
before the load is high enough to produce the minimum stress intensity factor required.
Thus, at remote loading, a material dependent minimum thickness of the layer is required
to obtain a crack velocity according to the conditions of the problem studied.

Now, even if the conditions of the problem can be satisfied as regards interface stresses
and stress intensity factors, one might question whether the crack will propagate in the
middle of the layer or veer towards one side. Questions about directional stability of cracks
produced by wedging have been studied by Melin (1991), assuming slow crack growth in
the middle of a strip. She showed that the path remains straight if the thickness of the
wedge is smaller than a material constant times the stress intensity factor times the square
root of the strip thickness. Although the present case is different in several important
aspects, a direct transfer of Melin's results indicates that directional stability ought to
prevail if the layer is sufficiently thick. But the minimum thickness required could be much
smaller than for the strip in Melin's problem, due to the presence of a supporting solid
medium on both sides of the layer. Moreover, unlike the case of a slowly moving crack, the
layer boundaries can influence the feedback from a disturbance in the crack edge region
only through a narrow wedge shaped region with the apex at the crack edge and directed
forwards. On the other hand, there is certainly also a velocity effect which, for instance,
might lead to branching in the layer.

Results obtained earlier for two other cases than the one studied here show the
following expressions for the crack edge vicinity in the thin layer approximations:

Case 1. Crack velocity sub-Rayleigh with respect to both media (Broberg, 1975):

IOCh(-S)d x-V!
x -- sas---.O

o Js d

where

(80)

(81)
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V2

a2 = 1-- a[ > 0
[ c2 '

V2

a 2 = 1--- a2 > 0
2 k 2 c2 '

V2

b2 = 1--- b] > 0
] /(2

C
2'

V2

b~ = 1--- b2 > 0
kT/(2 C 2 '

and other notations in agreement with those previously introduced in Sections 2 and 3.

Case 2. Crack velocity sub-Rayleigh with respect to the outer medium, supersonic with
respect to the layer (Broberg, 1974, 1977):

C3 foo h( -s) x- Vt
(O"y)y = d ~ - c:i r. ds as -d- -4 0

',I nd 0 ',Is

where C3 is a constant given in Broberg (1974, 1977),

(82)

(83)

and other notations in agreement with those previously introduced in Sections 2 and 3.

Comparison between the different cases. The case investigated in the present paper will
be referred to as case O. As regards the treatment of the three problems, there are some
similarities. Thus, the function N(IX.)/D(a) in the present work can be obtained from the
function with the same notation in Broberg (1974, 1977) after multiplying at. a2, b[ and b2

by the imaginary unit i, or from the function with the same notation in Broberg (1975)
after multiplying 01 and a2 by i. There are unfortunately misprints in the definitions of N (IX.)
and D (IX.) in the earlier papers. In the 1974 paper, a factor 2 is missing in front of the
second term in the expression for 82, in the 1977 paper, the terms R] sin b[IX.cos b2IX. and
- 82 cos b[IX. sin b2IX. are omitted in the expression for N (IX.) , and in the 1975 paper, the second
term in the expression for D (IX.) should be deleted. In the 1974 paper, it is shown that the
functions denoted D (IX.) and N (IX.) possess real zeroes, only. This property implies that the
functions N (a) and D (IX.) in the present work possess imaginary zeroes only.

One observes that (O"y)y = dis non-singular in case 2 and that the crack edge is completely
blunted. This is a consequence of the fact that the energy flow to the crack edge region
originates from the moving load on the crack faces, but it cannot reach the edge region
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directly through the layer, only indirectly through the outer medium towards the layer
boundary somewhat in front of the crack edge and then to the edge region through the
layer.

The stress intensity factor in case I is independent of the layer thickness 2d, whereas
the stress intensity factor in case 0 is proportional to J d, i.e. the stress <Jy decays more
rapidly with increasing distance from the crack edge the thinner the layer is at the same
crack face load h(x- Vt) or, if Ljd = 00, at the same remote load <J;. This is, of course,
the expected behaviour. For case 2, the stress in front of the crack edge is proportional to
IjJd.

For cases 1 and 2, the dependence on the crack face load h(x- Vt) on stresses and
displacements near the crack edge is given by the integral

f
'" h( -s)
--ds

oJs

whereas for case 0, this dependence is given by the integrals

(84)

(85)

Since PI is of the order of n (but depends on Vjc and material parameters), the first of the
integrals for case 0 is of the order of h(O)jn, irrespective of L, if hex - Vt) is approximately
constant, equal to h(O), for -a < x < 0, where a is of the order of nd. The integrals
following the first one are smaller, and their contribution to the near edge field is much
smaller than that of the first integral. Thus, the character of the load at distances larger
than about two layer thicknesses from the crack edge has no significant influence on the
stress-strain field near the crack edge region provided, of course, that the load at these
larger distances is not much larger than h(O).

Case 1 may be of interest in connection with a recent experimental investigation by
Washabaugh and Knauss (1994). They succeeded in reaching about 90% of the Rayleigh
wave velocity for crack growth in a thin layer of weakened material in a PMMA plate. The
explanation obviously is that the process region is prevented from lateral growth, which
otherwise seems to lead to increasing energy dissipation per unit of crack growth, although
the crack velocity may stay constant, as shown experimentally by Ravi-Chandar (1982)
and Ravi-Chandar and Knauss (I 984a-d), and by numerical simulations by Johnson (1992,
1993). In one simulation, which can be said to be the numerical equivalent to the experiment
by Washabaugh and Knauss (1994), Johnson (1993) confined the process region to a thin
layer and then, in contrast to the case with a non-confined process region, the crack did
not reach a constant terminal velocity, but continued to accelerate as long as the simulation
could be carried out. In other simulations with a confined process region, but for mode II,
Johnson (1990) obtained crack velocities even in the intersonic region.

Washabaugh and Knauss (1994) were very careful to obtain the same elasto-dynamic
properties at the layer as for the virgin material, whereas the strength, measured as the
static fracture toughness, was considerably reduced. However, one can expect some, even
though perhaps very small, differences as regards the elasto-dynamic properties. Such a
difference would not influence the energy flow to the crack edge region appreciably, cf eqns
(80) and (81), but the stress intensity factor would reach zero before the Rayleigh wave
velocity for the virgin material is reached, if the layer Rayleigh wave velocity is lower. It
should be noticed, though, that the relevant layer Rayleigh velocity should be the one at
plane strain, if the layer is much thinner than the plate thickness, as is the case in the
experiments by Washabaugh and Knauss, whereas the relevant Rayleigh wave velocity for
the virgin material should be the one at plane stress. If, on the other hand, the layer has
higher relevant Rayleigh wave velocity than the virgin material, the Rayleigh wave velocity

SAS 32-6/7-N
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for the virgin material is an upper limit, since eqn (81) signals interpenetration of the crack
faces otherwise.
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